Lineare Transformationen von Zufallsvariablen Wenn x eine zufällige Variable ist und wenn A und B Konstanten sind, ist A + BX eine lineare Transformation von x. Es skaliert x nach B und verschiebt es durch a. Eine lineare Transformation von X ist eine weitere zufällige Variable; Wir bezeichnen es oft von z.
- Was ist die Transformation normaler Zufallsvariablen??
- Was ist die lineare Transformationsgleichung?
- Wie finden Sie die lineare Transformation in Statistiken?
Was ist die Transformation normaler Zufallsvariablen??
g (x) = (x α) 1/β . Wenn die Transformation G nicht eins zu eins ist, ist eine besondere Sorgfalt erforderlich, um die Dichte von y = g (x) zu finden. Zum Beispiel, wenn wir g (x) = x2 nehmen, dann g - 1 (y) = √ y. Fy (y) = p y ≤ y = p x2 ≤ y = p - √ y ≤ x ≤ √ y = fx (√ y) - fx ( - √ y).
Was ist die lineare Transformationsgleichung?
Eine lineare Transformation (oder eine lineare Karte) ist eine Funktion t: rn → rm, die die folgenden Eigenschaften erfüllt: t (x+y) = t (x)+t (y)
Wie finden Sie die lineare Transformation in Statistiken?
Die Transformation wird durchgeführt, indem zuerst jeden Punktzahl mit der multiplikativen Komponente (b) und dann die additive Komponente (a) hinzugefügt wird. Beispielsweise werden der folgende Datensatz linear mit der Transformation x transformiertich = 20 + 3*xich, wobei a = 20 und b = 3.